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Abstract

This paper is concerned with the investigation of the convergence issue of the Volterra-series representations of the

Duffing’s oscillator subjected to harmonic inputs. A simple criterion is proposed to determine the upper limit of the

magnitude of the harmonic inputs. A comparison between the new proposed criterion and a criterion suggested by

Tomlinson et al. [G.R. Tomlinson, G Manson, G.M. Lee, A simple criterion for establishing an upper limit to the

harmonic excitation level of the Duffing oscillator using the Volterra series. Journal of Sound and Vibration 190 (1996)

751–762] was carried out. The results show that the new criterion can provide a more accurate prediction about the

convergence of the Volterra-series representation of the Duffing’s oscillator.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering many dynamical systems have nonlinear components, which cannot simply be described by a
linear model. For example, vibration components with clearances [1] and motion limiting stops [2] or vibration
components with fatigue damage [3], which cause abrupt changes in the stiffness and damping coefficients,
represent a significant proportion of these systems. To investigate such nonlinear systems, nonlinear oscillators
have been widely adopted, among which the Duffing’s oscillator is the most well-known one. It has been
widely used to model a single-degree-of-freedom system with nonlinear stiffness [4].

The Volterra-series approach [5,6] is a powerful tool for the analysis of nonlinear systems, which extends the
familiar concept of the convolution integral for linear systems to a series of multidimensional convolution
integrals. The Fourier transforms of the Volterra kernels, called generalised frequency response functions
(GFRFs) [7], are an extension of the linear frequency response function (FRF) to the nonlinear case. If a
differential equation or difference equation is available for a nonlinear system, the GFRFs can be determined
using the algorithm in Refs. [8,9]. Recently, a novel concept known as nonlinear output frequency response
functions (NOFRFs) was proposed by the authors [10]. The concept can be considered to be an alternative
extension of the classical FRF for linear systems to the nonlinear case. NOFRFs are one-dimensional
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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functions of frequency, which allow the analysis of nonlinear systems to be implemented in a manner similar
to the analysis of linear systems.

Theoretically, nonlinear systems such as the Duffing’s oscillator need to be expressed using an infinite
Volterra series, however, in practice a truncated series can be used provided the number of terms included can
provide an accurate approximation to the response of the system. Therefore, the Volterra-series representation
is required to be convergent, and a divergent Volterra series can not be used to describe the responses of
nonlinear systems. Toward the convergence issue of the Volterra-series representation of the Duffing’s
oscillators subjected to harmonic inputs, a few researchers [4,11,12] have put forward some criterions to
determine the upper limit of the magnitude of the harmonic inputs. In the present study, based on the concept
of NOFRFs, a new method is proposed to study the convergence issue of the Volterra-series representation of
the Duffing’s oscillator. A new simple criterion is derived to determine the upper limit of the magnitude of the
harmonic inputs, under which the Volterra-series representation is absolutely convergent. A comparison
between the new proposed criterion and the criterion suggested in Ref. [4] has been carried out. The results
show that the new criterion can provide a more accurate prediction about the convergence of the Volterra-
series representation of the Duffing’s oscillator.

2. Nonlinear output frequency response functions

The definition of NOFRFs is based on the Volterra-series theory of nonlinear systems. Consider the class of
nonlinear systems, which are stable at zero equilibrium and which can be described in the neighbourhood of
the equilibrium by the Volterra series

yðtÞ ¼
X1
n¼1

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞ
Yn

i¼1

uðt� tiÞdti, (1)

where y(t) and u(t) are the output and input of the system, hn(t1,y, tn) is the nth-order Volterra kernel. Lang
and Billings [7] derived an expression for the output frequency response of this class of nonlinear systems to a
general input. The result is

Y ðjoÞ ¼
P1
n¼1

Y nðjoÞ for 8o;

Y nðjoÞ ¼
1=
ffiffi
n
p

ð2pÞn�1
R
o1þ���þon¼o

Hnðjo1; . . . ; jonÞ
Qn
i¼1

UðjoiÞdsno:

8>>><
>>>: (2)

In Eq. (2), Y(jo) is the spectrum of the system output, Yn(jo) represents the nth-order output frequency
response of the system

Hnðjo1; . . . ; jonÞ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞ e
�ðo1t1þ���þontnÞj dt1; . . . ;dtn (3)

is the nth-order GFRF [3], and Z
o1þ���þon¼o

Hnðjo1; . . . ; jonÞ
Yn

i¼1

UðjoiÞdsno

denotes the integration of Hnðjo1; . . . ; jonÞ
Qn

i¼1UðjoiÞ over the n-dimensional hyper-plane o1 þ � � � þ on ¼ o.
The new concept of the NOFRFs recently proposed by Lang and Billings [10] is defined as

GnðjoÞ ¼

R
o1þ���þon¼o

Hnðjo1; . . . ; jonÞ
Qn

i¼1UðjoiÞdsnoR
o1þ���þon¼o

Qn
i¼1UðjoiÞdsno

(4)

under the condition that

UnðjoÞ ¼
Z
o1þ���þon¼o

Yn

i¼1

UðjoiÞdsnoa0: (5)
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Note that Gn(jo) is valid over the frequency range of Un(jo), which can be determined using the algorithm in
Ref. [7].

By introducing the NOFRFs Gn(jo), n ¼ 1,y,N, Eq. (2) can be written as

Y ðjoÞ ¼
X1
n¼1

Y nðjoÞ ¼
X1
n¼1

GnðjoÞUnðjoÞ, (6)

which is similar to the description of the output frequency response for linear systems. The NOFRFs reflect a
combined contribution of the system and the input to the system output frequency response behaviour.

When system (1) is subject to a harmonic input [13]

uðtÞ ¼ A cosðoF tþ bÞ, (7)

it can be derived that the output spectrum Y ðjoÞ of nonlinear systems can be expressed as

Y ðjkoF Þ ¼
X1
n¼1

GH
kþ2ðn�1ÞðjkoF ÞAkþ2ðn�1ÞðjkoF Þ ðk ¼ 0; 1; . . . ;1Þ, (8)

where

Anðjð�nþ 2kÞoF Þ ¼
1

2n Ck
n jAj

nejð�nþ2kÞb, (9)

GH
n ðjð�nþ 2kÞoF Þ ¼ HnðjoF ; . . . ; joF

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{k

;�joF ; . . . ;�joF

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n�k

Þ. (10)

Consider the nonlinear systems described by the Duffing’s oscillator

m €yþ c _yþ k1yþ k3y3 ¼ uðtÞ, (11)

where m, c, k1 and k3 are the parameters of the mass, damping and stiffness of the system, respectively. Denote
o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
, m ¼ c=ð2o0Þ, � ¼ k3=k1, u0ðtÞ ¼ ð1=mÞuðtÞ Eq. (11) can be rewritten as

€yþ 2mo0 _yþ o2
0yþ �o

2
0y3 ¼ u0ðtÞ. (12)

Using the results in Ref. [4] and Eq. (10), the NOFRFs of the Dunffing’s oscillator under a harmonic input
can be obtained. The results show that all even order NOFRFs are zero; the expressions of the other NOFRFs
are

GH
1 ðjoF Þ ¼ H1ðjoF Þ ¼

1

�o2
F þ j2mo0oF þ o2

0

(13)

and

GH
n ðjð�nþ 2kÞoF Þ ¼ �

�o2
0
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1 ðjð�nþ 2kÞoF Þ
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CL1
n1

CL2
n2

CL3
n3

GH
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ðjð�n1 þ 2L1ÞoF Þ

�GH
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ðjð�n2 þ 2L2ÞoF Þ

�GH
n2
ðjð�n3 þ 2L3ÞoF Þ

0
BBB@

1
CCCA

0
BBB@

1
CCCA ðn ¼ 3; 5; . . .Þ. ð14Þ

3. Convergence of the NOFRFs of Duffing’s oscillator

Substituting (9) into (8) yields

Y ðjkoF Þ ¼
X1
n¼1

GH
kþ2ðn�1ÞðjkoF ÞC

nþk�1
kþ2ðn�1Þ A=2

�� ��kþ2ðn�1Þ ejkb ðk ¼ 0; 1; . . . ;1Þ. (15)
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Obviously,

Y ðjkoF Þ
�� ��pX1

n¼1

GH
kþ2ðn�1ÞðjkoF Þ

Cnþk�1
kþ2ðn�1Þ

2kþ2ðn�1Þ

�����
����� Aj jkþ2ðn�1Þ ðk ¼ 0; 1; . . . ;1Þ. (16)

Consider the ordinary power series gðxÞ ¼
P1

n¼1anxn, which converges absolutely for |x|or, where the
radius of convergence is given by [14]

r ¼ lim supn!1 anj j
1=n

� �� ��1
. (17)

Therefore, a radius of convergence rk can be found for the Volterra-series representation (15) using (16) as

Aj jork ¼ lim supn!1 GH
kþ2ðn�1ÞðjkoF Þ

Cnþk�1
kþ2ðn�1Þ

2kþ2ðn�1Þ

�����
�����
1=ðkþ2ðn�1ÞÞ

0
@

1
A

0
@

1
A�1 ðk ¼ 0; 1; . . . ;1Þ. (18)

Eq. (18) can be used to determine the upper bound on the amplitude of the harmonic input, below which the
Volterra-series representation of the kth harmonic component of system (1) is absolutely convergent.
Moreover, it can be seen that

Aj jor ¼ minðr0;r1; . . .Þ (19)

can be defined as the convergence radius for the Volterra-series representation of the response of the nonlinear
system subjected to a harmonic input.

The present study is to determine the convergence radius of the Volterra series for the Duffing’s oscillator.
However, it is impossible to directly use Eqs. (18) and (19) in practice. An alternative approach is to find a gain
bound series F such that, for all k,

FnX GH
n ðjð2k � nÞoF Þ

Ck
n

2n

����
����, (20)

then the convergence radius is defined as

Aj jor ¼ lim supn!1 Fnð Þ
1=n

� �� ��1
(21)

within which the Volterra-series representation of the Duffing’s oscillators subjected to a harmonic input
converge absolutely.

Following this idea, a method is established to determine the convergence radius for the Volterra-series
representation of the Duffing’s oscillators subjected to harmonic inputs.

Proposition 1. Denote

l ¼ max
k¼1;...;1

GH
1 ðjð2k � 1ÞoF Þ

�� ��� �
, (22)

then the NOFRFs expressed in Eq. (10) satisfy

GH
n ðjð�nþ 2kÞoF Þ

�� ��pPðn;kÞ l�o2
0

� �ðn�1Þ=2
G1ðjoF Þ
�� ��n ðn ¼ 1; 3; 5; . . .Þ, (23)

where Pð1;1Þ ¼ Pð3;1Þ ¼ Pð3;3Þ ¼ 1 and

Pðn;kÞ ¼
1

Ck
n

X
n1þn2þn3¼n

L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
n3

Pðn1;L1ÞPðn2;L2ÞPðn3;L3Þ. (24)

Proof of Proposition 1. Clearly, for n ¼ 1,

G1ðjoF Þ
�� �� ¼ Pð1;1Þ l�o2

0

� �ð1�1Þ=2
G1ðjoF Þ
�� �� ¼ G1ðjoF Þ

�� �� (25)

and for n ¼ 3, it is known from Eq. (14) that

GH
3 ðjoF Þ ¼ ��o2

0G
H
1 ð�joF ÞG

H
1 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðjoF Þ, (26)
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GH
3 ðj3oF Þ ¼ ��o2

0GH
1 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðj3oF Þ. (27)

Obviously,

GH
3 ðjoF Þ

�� ��pl�o2
0 GH

1 ðjoF Þ
�� ��3 ¼ Pð3;1Þl�o2

0 GH
1 ðjoF Þ

�� ��3, (28)

GH
3 ðj3oF Þ

�� ��pl�o2
0 GH

1 ðjoF Þ
�� ��3 ¼ Pð3;3Þl�o2

0 GH
1 ðjoF Þ

�� ��3. (29)

Therefore, the proposition holds for n ¼ 1 and 3.
Assume that proposition also holds for all values n up to N�2 with NX3. Consider the case of n ¼ N below.
Substituting the cases of n ¼ n1, n2 and n3 (n1 þ n2 þ n3 ¼ N) and (22) into (14) yields
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L1
n1

CL2
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0
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1
CA

¼ PðN;kÞ l�o2
0

� �ðN�1Þ=2
G1ðjoF Þ
�� ��N , ð30Þ

that is, the proposition holds for n ¼ N. Therefore Proposition 1 is proved. &

Proposition 2.

Pðn;kÞ ¼
1

Ck
n

X
n1þn2þn3¼n

L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
n3

Pðn1;L1ÞPðn2;L2ÞPðn3;L3Þp1 ðn ¼ 1; 3; 5; . . .Þ. (31)

Proof of Proposition 2. This proposition clearly holds for n ¼ 1 and n ¼ 3. For n ¼ 5, it is known from Eq.
(24) that

Pð5;kÞ ¼
1

Ck
5

X
n1þn2þn3¼5

L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
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Pðn1;L1ÞPðn2;L2ÞPðn3;L3Þ

¼
1

Ck
5
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L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
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p

1

Ck
5

Ck
5 ¼ 1. ð32Þ

Therefore, this proposition also holds for n ¼ 5.
Assume that proposition also holds for all values n up to N�2 with NX3. Consider the case of n ¼ N below.

Substituting the cases of n ¼ n1, n2 and n3 (n1 þ n2 þ n3 ¼ N) into (24) yields

PðN ;kÞ ¼
1

Ck
N

X
n1þn2þn3¼N

L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
n3

Pðn1;L1ÞPðn2;L2ÞPðn3;L3Þ

p
1
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N
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L1þL2þL3¼k

CL1
n1

CL2
n2

CL3
n3
p

1

Ck
N

Ck
N ¼ 1, ð33Þ

Thus the proposition holds for n ¼ N. Therefore Proposition 2 is proved. &
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From Eqs. (23) and (31), it can be deduced that

GH
N ðjð2k �NÞoF Þ

Ck
N

2N

����
����p l�o2

0

� �ðN�1Þ=2
G1ðjoF Þ
�� ��N Ck

N

2N

p l�o2
0

� �ðN�1Þ=2
G1ðjoF Þ
�� ��N C

ðNþ1Þ=2
N

2N
ðN ¼ 1; 3; 5; . . .Þ. ð34Þ

Define the gain bound series F as

F n ¼ l�o2
0

� �ðn�1Þ=2
G1ðjoF Þ
�� ��n Cðnþ1Þ=2n

2n ðn ¼ 1; 3; 5; . . .Þ (35)

then the convergence radius of the Duffing’s oscillator is determined as

Aj jor ¼ lim supn!1 l�o2
0

� �ðn�1Þ=2
G1ðjoF Þ
�� ��n Cðnþ1Þ=2n

2n

 !1=n
0
@

1
A

0
@

1
A�1

¼
1

G1ðjoF Þ
�� �� ffiffiffiffiffiffiffiffiffiffi

l�o2
0

q lim supn!1 l�o2
0

� ��1=2 Cðnþ1Þ=2n

2n

 !1=n
0
@

1
A

0
@

1
A�1

¼
1

G1ðjoF Þ
�� �� ffiffiffiffiffiffiffiffiffiffi

l�o2
0

q lim supn!1 l�o2
0

� ��1=2 3
4

5

6
� � �

n

nþ 1

	 
1=n
 ! !�1

¼
1

G1ðjoF Þ
�� ��o0

ffiffiffiffiffi
l�
p . ð36Þ

The criterion defined by expression (36) provides a simple approach to determine the maximal magnitude of
the input excitation level, under which the response of the Duffing’s oscillator can be described using a
convergent Volterra series.
3. Numerical studies and discussions

Actually, a few researchers have investigated the convergence issue of using the Volterra series to describe
the responses of the Duffing’s oscillators subjected to the harmonic inputs. Through analysing the Volterra-
series representation of the first-order harmonic, Tomlinson, Manson and Lee [4] derived a simple criterion,
which can provide an estimation of the magnitude of the harmonic input below which the Volterra-series
representation is convergent. The criterion is defined as

146�o2
0ðA=2Þ

2 H1ðjoF Þ
�� ��3 ) Ao 3

2
�o2

0 H1ðjoF Þ
�� ��3� ��2

. (37)

Based on a ratio test procedure, Chatterjee and Vyas [11] proposed an algorithm to compute the critical
value of the harmonic input magnitude for the non-dimensional Duffing’s oscillators. The idea of the ratio test
procedure is essentially the same as Tomlinson’s. Numerical studies have showed that criterion by the
algorithm is in close agreement with the real situation. However, the ratio test procedure used to find the
critical value needs iterative computation over a large number of values of the ratios, therefore it is time
consuming.

Through comparing (36) and (37), it can be found that there is a great similarity between the criterion
proposed here and the criterion proposed by Tomlinson et al. [4], and the only significant difference is the
replacement of jGH

1 ðjoF Þj by l in Eq. (36). In the following numerical case studies, it can be seen that, by
introducing l to the definition of the criterion, the effects of the sub-resonances on the convergence of the
Volterra-series representation can be eliminated.
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The parameters of the considered Duffing’s oscillator in the numerical study are

m ¼ 0:005; o0 ¼ 20p; � ¼ 0:01o4
0.

Fig. 1 shows the two criterions calculated using (36) and (37), respectively for the Duffing’s oscillator.
Obviously, apart from the frequency range around 1

3
o0, there are no big differences between the criterions

calculated by the two methods.
According to the criterions defined by both (36) and (37), from Fig. 1, it can be predicted that, when

A ¼ 0.008, the Volterra-series representations are always convergent no matter whatever the frequency of the
harmonic input may be, and when A ¼ 0.1, if the frequency of the harmonic input is around o0, the Volterra-
series representations will be divergent. But, at the case of A ¼ 100, only when the frequency of the harmonic
input is larger than 2.3o0, the response of the Duffing’s oscillator can be described using a convergent Volterra
series.

Figs. 2–4 show the decompositions of the first and third harmonic components using NOFRFs when
A ¼ 0.008, 0.1 and 100, respectively. It is worth denoting here that, in all figures, only the NOFRFs up to 13th
order are considered.

Denote jY ðN ;kÞj ¼ jG
H
N ðjkoF ÞANðjkoF Þj, from Fig. 2, it can be seen that, in the case of A ¼ 0.008, at all

frequencies, the following relationships hold:

Y ð1;1Þ
�� ��4 Y ð3;1Þ

�� ��4 Y ð5;1Þ
�� ��4 Y ð7;1Þ

�� ��4 Y ð9;1Þ
�� ��4 Y ð11;1Þ

�� ��4 Y ð13;1Þ
�� �� (38)
Fig. 1. The criteria calculated using (36) (solid line) and (37) (dashed line), respectively.

Fig. 2. The decompositions of the first and third harmonics using NOFRFs (A ¼ 0.008): (a) the first harmonic, (b) the third harmonic

[orders 1, 7, 13—solid line; orders 3, 9—dashed line; orders 5, 11—dotted line].
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Fig. 3. The decompositions of the first and third harmonics using NOFRFs (A ¼ 0.1): (a) the first harmonic, (b) the third harmonic

[orders 1, 7, 13—solid line; orders 3, 9—dashed line; orders 5, 11—dotted line].

F F

Fig. 4. The decompositions of the first and third harmonics using NOFRFs (A ¼ 100): (a) the first harmonic, (b) the third harmonic

[orders 1, 7, 13—solid line; orders 3, 9—dashed line; orders 5, 11—dotted line].
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and

Y ð3;3Þ
�� ��4 Y ð5;3Þ

�� ��4 Y ð7;3Þ
�� ��4 Y ð9;3Þ

�� ��4 Y ð11;3Þ
�� ��4 Y ð13;3Þ

�� ��. (39)

This implies that the Volterra-series representations are always convergent when A ¼ 0.008. However,
Fig. 3 shows that, when A ¼ 0.1, the relationships (38) and (39) are no longer valid at the cases of oF � o0,
which implies the Volterra-series representations are divergent when the frequency of the harmonic input is
around o0. At the case of A ¼ 100, Fig. 4 clearly shows that, for the frequencies oFo2:3o0, the following
relationships hold:

Y ð1;1Þ
�� ��o Y ð3;1Þ

�� ��o Y ð5;1Þ
�� ��o Y ð7;1Þ

�� ��o Y ð9;1Þ
�� ��o Y ð11;1Þ

�� ��o Y ð13;1Þ
�� �� (40)

and

Y ð3;3Þ
�� ��o Y ð5;3Þ

�� ��o Y ð7;3Þ
�� ��o Y ð9;3Þ

�� ��o Y ð11;3Þ
�� ��o Y ð13;3Þ

�� ��, (41)
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therefore, the Volterra-series representations are divergent, and only when oF42:3o0, the first and third
harmonic components can be decomposed using convergent Volterra series. Obviously, above analysis results
strictly consist with the results predicted using the criterions defined by (36) and (37).

From Fig. 1, it can be known that, if the magnitude of the harmonic input is above 1, according to the
criterion defined by (37), the Volterra-series representation should be convergent at the frequencies around
1
3
o0, on the contrary, according to the criterion defined by (36), the Volterra-series representation is divergent.

Figs. 5 and 6 show the decompositions of the first and third harmonic components using the NOFRFs for the
case of A ¼ 2.0. Clearly, at the frequencies around 1

3
o0, the decompositions of the first and third components

using the NOFRFs are divergent. Therefore, criterion (36) can give correct predictions while criterion (37) fails
to do so. The frequency 1

3o0 is actually a sub-resonant frequency of the Duffing’s oscillator where the third
and the other higher-order NOFRFs can reach a maximum [13]; therefore, the comparison results imply that
criterion (37) is not valid when the Duffing’s oscillator is running at a sub-resonance region.

Figs. 7(a) and (b) show the amplitudes of the first harmonics and the third harmonics obtained by the
NOFRF method and the Runge– Kutta method, respectively, where the amplitude of the input is 2 and the
Fig. 5. The decompositions of the first harmonic using NOFRFs together a zoom view around oF ¼
1
3
o0 (A ¼ 2): (a) original view, (b)

zoom view [orders 1, 7, 13—solid line; orders 3, 9—dashed line; orders 5, 11—dotted line].

Fig. 6. The decompositions of the third harmonic using NOFRFs together a zoom view around oF ¼
1
3
o0 (A ¼ 2): (a) original view, (b)

zoom view [orders 1, 7, 13—solid line; orders 3, 9—dashed line; orders 5, 11—dotted line].
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Fig. 7. Comparison between the NOFRF method and the Runge– Kutta method (star—NOFRF; A ¼ 2): (a) the first harmonic, (b) the

third harmonic.
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frequency of the sinusoidal input is changed between 0.25o0 and 3o0. Obviously, the Volterra-series
representation is divergent at the frequencies around o0, and the amplitudes of the first harmonic and third
harmonic calculated using the NOFRFs are thus significantly deviating from the results obtained by the
Runge– Kutta method. It can also be seen that, at the frequencies around 1

3o0, the amplitude of the third
harmonic calculated using the NOFRF method cannot match the result obtained by the Runge– Kutta

method. It implies that, when A ¼ 2, at the frequency oF ¼
1
3
o0, the NOFRF fails in representing the third

harmonic because the Volterra-series representation is divergent. This result has validated the effectiveness of
criterion (36).

4. Conclusions

In the present study, based on the concept of NOFRFs, a new method is proposed to study the convergence
issue of the Volterra-series representation of the Duffing’s oscillator. A new simple criterion is deduced to
determine the upper limit of the magnitude of the harmonic inputs, under which the Volterra-series
representation is absolutely convergent. A comparison study has been carried out between the new proposed
criterion and the criterion suggested by other researchers. The results have verified the effectiveness of the new
criterion, and showed that the new criterion can give more accurate results about where the Volterra-series
representation can be divergent.
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